

MASELTOV – DELIVERABLE D5.1 “Content Abstraction and Databases”

Page 1 of 31

DELIVERABLE REPORT

D5.1

“Content Abstraction and

Databases”

collaborative project

MASELTOV

Mobile Assistance for Social Inclusion and Empowerment of Immigrants with Persuasive Learning

Technologies and Social Network Services

Grant Agreement No. 288587 / ICT for Inclusion

project co-funded by the

European Commission

Information Society and Media Directorate-General

Information and Communication Technologies

Seventh Framework Programme (2007-2013)

Due date of deliverable: 31 December, 2013 (month 24)

Actual submission date: 07 August, 2014 (Revision 1)

Start date of project: Jan 1, 2012

Duration: 36 months

Work package WP5 – PERSONALIZATION AND

RECOMMENDATION

Task T5.1 – Content Abstraction and Databases

Lead contractor for this deliverable AIT

Editor Sofoklis Efremidis

Authors Sofoklis Efremidis, Iakovos Georgiou

Quality reviewer Mical Busta, CTU

Project co-funded by the European Commission within the Seventh Framework Programme (2007–2013)

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

Mobile Assistance for Social Inclusion and Empowerment

of Immigrants with Persuasive Learning Technologies and Social Network Services

MASELTOV – DELIVERABLE D5.1 “Content Abstraction and Databases”

Page 2 of 31

© MASELTOV - for details see MASELTOV Consortium Agreement

partner organisation ctry

01

JOANNEUM RESEARCH

FORSCHUNGSGESELLSCHAFT MBH
AT

02

CURE – CENTER FOR USABILITY RESEARCH

AND ENGINEERING
AT

03

RESEARCH AND EDUCATION LABORATORY

IN INFORMATION TECHNOLOGIES
EL

04

UNDACIO PER A LA UNIVERSITAT OBERTA

DE CATALUNYA
ES

05

THE OPEN UNIVERSITY UK

06

COVENTRY UNIVERSITY UK

07

CESKE VYSOKE UCENI TECHNICKE V PRAZE CZ

08

FH JOANNEUM GESELLSCHAFT M.B.H. AT

09

TELECOM ITALIA S.p.A IT

10

FLUIDTIME DATA SERVICES GMBH AT

11

BUSUU ONLINE S.L ES

12

FUNDACION DESARROLLO SOSTENIDO ES

13

VEREIN DANAIDA AT

14

THE MIGRANTS' RESOURCE CENTRE UK

Mobile Assistance for Social Inclusion and Empowerment

of Immigrants with Persuasive Learning Technologies and Social Network Services

MASELTOV – DELIVERABLE D5.1 “Content Abstraction and Databases”

Page 3 of 31

CONTENT

1. Executive Summary ... 4

2. Overview ... 5

3. User Profile and Recommender ... 6

4. Content Abstractions ... 7

5. Databases .. 11

6. Database Contents ... 17

6.1 User Preferences ... 17

6.2 Events .. 19

6.3 Use of Events and Preference data ... 20

7. User Identification ... 22

8. Space Requirements ... 24

8.1 Average MApp Usage ... 25

Appendix A: Database Schema .. 26

Mobile Assistance for Social Inclusion and Empowerment

of Immigrants with Persuasive Learning Technologies and Social Network Services

MASELTOV – DELIVERABLE D5.1 “Content Abstraction and Databases”

Page 4 of 31

1. EXECUTIVE SUMMARY

This document reports on the underlying concepts and abstractions for the personalized

services offered by the MASELTOV platform. The personalization of the MASELTOV

services depends on a set of user data and preferences and also the user context, which is

captured through a set of events coming from a number of sensors and Mapp applications.

The document presents how the user context, which is continuously updated as a result of user

actions, is communicated from the client User Profile to the back end server for storage and

subsequent manipulation. The user context, which comprises information like the current user

position and movement, user activity like browsing, searching, and user interactions with

other users, forms the basis for the MASELTOV personalized services and targeted

recommendations. Back end components like the recommender pick on the stored contextual

information for producing personalized recommendations in an attempt to enhance the overall

user experience and facilitate social inclusion.

Mobile Assistance for Social Inclusion and Empowerment

of Immigrants with Persuasive Learning Technologies and Social Network Services

MASELTOV – DELIVERABLE D5.1 “Content Abstraction and Databases”

Page 5 of 31

2. OVERVIEW

The rich suite of applications that are offered by the MASELTOV platform includes targeted

personalized recommendation services, which help immigrant users to adapt easier to their

new environment and facilitate their social inclusion. Personalized recommendations are

generated based on contextual user information as well as their profile data and declared

preferences. Contextual user information is formed as a result of fusing data coming from a

variety of sensors on the smartphone device, like GPS receiver, accelerometer, etc. or by

monitoring user behavior. Obviously the more information pertaining to a user is available the

more specialized and targeted the produced recommendations can be.

Contextual information captures the environment and behavior of the user. Information

related to the user environment may include the user’s current position, ambient weather

conditions, user’s movement, etc. Typically, this information is captured by a variety of

sensors on board the user’s smartphone and relayed to the User Profile for further storage and

processing. Moreover, user behavior relates to user actions, like the use of a MApp

application, the searching of the wiki for a specific term, the searching of the internet for a

topic of interest, or a place of interest, etc. As a result of such actions, a number of events are

generated by the various MApp applications, which are also sent to the User Profile for

storage and subsequent processing.

Raw data coming from the user environment or the user actions are processed for extracting

user related information and fused for the formulation of abstractions about the user context.

Context abstractions can subsequently form the basis for targeted and personalized

recommendations for the user, which may further be enhanced by the user preferences as

specified in the User Profile structures.

This deliverable presents the architecture of the MASELTOV platform components that are

responsible for processing and storing of user contextual information, the way this

information is structured and stored in the back end databases, and its subsequent processing

towards the generation of personalized recommendations.

Mobile Assistance for Social Inclusion and Empowerment

of Immigrants with Persuasive Learning Technologies and Social Network Services

MASELTOV – DELIVERABLE D5.1 “Content Abstraction and Databases”

Page 6 of 31

3. USER PROFILE AND RECOMMENDER

The User Profile is a central component of the MASELTOV platform as it maintains

structures like user data and preferences and is also the sink for events and notifications that

are generated by Mapp applications and smartphone services, respectively. All this

information is eventually relayed and stored in a back end database, the structure of which is

shown in the following sections. The stored information captures the user context which

forms the basis for subsequent processing, and the generation of personalized

recommendations to the user. The whole process takes place in real time, i.e., as contextual

information is continuously updated as a result of user actions, it is directly used by the

recommender to produce recommendations to the user. The overall architecture of the User

Profile and recommender components is shown in Figure 1. As shown in the figure, both

components comprise a client and a server subcomponent. The back end database is the

repository for the user related data and preferences and the events and notifications coming

from the client side. These data are used by the recommender for generating

recommendations to the user. The recommender also makes use of a set of rules, which reside

is a special purpose file that resides outside the back end database.

Figure 1: User Profile and Recommender Architecture.

Mobile Assistance for Social Inclusion and Empowerment

of Immigrants with Persuasive Learning Technologies and Social Network Services

MASELTOV – DELIVERABLE D5.1 “Content Abstraction and Databases”

Page 7 of 31

4. CONTENT ABSTRACTIONS

User content includes any information that pertains to user preferences and user actions. User

preferences are a set of static data that are declared by the user and reflect his/her likes, e.g.

hobbies, cultural, entertainment, recreational preferences and so on. User actions pertain to

user activity and state, like the current user location and movement, interactions with other

users, use of tools and applications and so on. User actions are captured by events that are

continuously generated and relayed to the User Profile for storage and subsequent processing.

Events and notifications are generated by a number of Mapp applications and services and

carry data related to the user context. Events are produced by a number of diverse Mapp

applications and services, for example the location service that makes use of the onboard GPS

sensor, the TextLens application that makes user of the onboard camera, the language learning

Mapp application, the social radar, etc. Each Mapp application generates and sends to the

User Profile events according to the user actions, for example starting a new topic for a

language course will generate an event. The generated events continuously capture the user

context, they are relayed to the back end server, where they are stored so as to be used by

other services like the recommender.

The diversity of the generated events hints towards a generic definition of their structure so

that they can carry information from a multitude of sources and in a uniform way. Therefore

the definition of events as presented also in Deliverable D5.2 “User Profiling and

Personalization” should be as generic as possible and the information they carry should be

expressed in a symbolic form. The structure of events as defined in Deliverable D5.2 contains

the following fields.

1. its source identification, i.e., a unique id of the component that has produced the event

2. a timestamp, indicating the time the event has been produced, and

3. a collection of <key, value> pairs that specify the information that is carried along

with the event.

Item (3) of the list above is purposely defined in such a generic way. Different applications

generate different types of contextual data, which must be carried through in a uniform way.

More concretely an event has the following structure (expressed in Java notation).

String source;

GregorianCalendar timestamp;

HashMap<String, Object> info;

The structure above is directly mapped to an Android ContentValues object, which contains

all the fields above, and can be communicated to the User Profile Content Provider through an

insert URI, which is also specified in D5.2 “User Profiling and Personalization”. The same

structure is used for notifications coming from Mapp services, for example, the positional

service. Subsequent sections show how the generic event structure that is presented above is

eventually mapped to database tables.

Each Mapp application has its own unique source string, for example, events generated by the

personalized learning application have as value of the source field “Learning”. When the

mixed reality game reaches a point where a point of interest is shown in the background of a

Mobile Assistance for Social Inclusion and Empowerment

of Immigrants with Persuasive Learning Technologies and Social Network Services

MASELTOV – DELIVERABLE D5.1 “Content Abstraction and Databases”

Page 8 of 31

scene, it will send an event that has the value “MixedRealityGame” for the source field and

{“ImmigrationOfficeBuilding”, <location>)} for the info field.

The combination and fusion of raw data that are carried by a number of Mapp events results

into the extraction of information and knowledge about the user context and the subsequent

formulation of content abstractions. The extracted information can be further used for

advanced services, for example, the building of a dynamic user profile, the production of

personalized recommendations, etc.

The MASELTOV platform specifies a recommender component, whose purpose is exactly

this, i.e., to generate targeted recommendations from the abstracted user content. The

recommender is driven by a set of rules, which specify what is to be recommended based on

the detected abstract user content. In its most general form, a rule specifies what action to be

taken (recommendations in the case of MASELTOV) when certain conditions are satisfied.

The general form of a rule is

Predicate → Action [expiration specification]?

The interpretation of this rule is that when the predicate is satisfied the rule fires and the

action is taken. Therefore, in the case of the Recommender rules, the predicate captures the

user content as abstracted from data that are carried through events, and the action is the

recommendation to be issued based on the abstracted content.

An example rule is the following:

Predicate:

dist(current location, 37o58’51 12”N, 23o45’15 81”E) < 1Km

&&

User has recently searched for keyword “Music”

Action:

Recommend attending tonight’s concert at Athens Music Hall

Informally, the rule says that if the user is currently located within a 1 kilometer radius from

the Athens Music Hall and has recently launched a search related to music a recommendation

should be issued for an upcoming music event in the Music Hall.

The abstracted user content comprises two parts: the current context, which includes user

location, and the recent user behaviour. The rule will fire if the predicate, which expresses the

abstracted user content becomes true. In turn, the user content is abstracted from the events

that are relayed to the User Profile and are logged in the back end database.

Deliverable D5.4.1 contains a formal specification of rules and in particular of their

preconditions. For the sake of completeness the grammar specification of rule preconditions is

shown below as well.

pred : | aexpr

aexpr : bterm { ‘||’ bterm }*

bterm : bfactor { ‘&&’ bfactor }*

Mobile Assistance for Social Inclusion and Empowerment

of Immigrants with Persuasive Learning Technologies and Social Network Services

MASELTOV – DELIVERABLE D5.1 “Content Abstraction and Databases”

Page 9 of 31

bfactor : cfactor

 [[‘==’ | ‘!=’ | ‘>’ | ‘>=’ | ‘<’ | ‘<=’] cfactor]?

cfactor : dfactor { [‘+’ | ‘-’] dfactor }*

dfactor : efactor { [‘*’ | ‘/’ | ‘%’] efactor }*

efactor : [‘!’ | ‘-’] efactor

 | UserProfEntry

 | EventEntry

 | predef ‘(’ expr-list ‘)’

 | number

 | ‘true’

 | ‘false’

 | string

 | ‘[’ lat ‘,’ long ‘]’

 | ‘(’ aexpr ‘)’

expr-list :

 | expr { ‘,’ expr }*

EventEntry: ‘$’ event-name ‘.’ event-field

The above grammar specifies the form of rule preconditions. References to events are

specified as well as shown by the EventEntry resolution, which is used in the efactor rule.

Therefore references to events and the carried <key, value> pairs are allowed by the grammar.

The same grammar allows the use of a set of predefined predicates, like dist, which is shown

in the example above. An actual implementation may provide support for a number of

predefined predicates. For example, the current prototype implements the following

primitives:

 findInfoComponentResource() - returns the resource matching related keyword of the

Info article's title (used in “Info Article Title Recommendation” rule).

 findTextLensComponentResource() - returns the resource matching related keyword

of the translated text (used in “TextLens Recommendation” rule).

 finLanguageLearningLModuleByPOI() - returns the appropriate language learning

module based on the category of the POI that the user has entered; the module is going

to be used to send the user directly to the specific Language Learning module (used in

“User Enters a POI Recommendation” rule).

 checkUserPreferencesWithPOIs(POIs) - returns a number of POIs (in JSON format)

that match their categories with one of the user's preference hobbies (used in “User

Preferences and POIs” rule).

 userHasHobbies() - returns a boolean true, if the user has already at least one hobbies

selected in user profile, otherwise returns false (used in “User Preferences Hobbies is

Empty” rule).

 setLearningLevel(language, course, level) - sets a new level for a language/course

combination for the user (used in “Learning Level Recommendation” rule).

 getUserCoins() - returns the number of coins currently available for the user (used in

“Add Coins Recommendation” rule).

Mobile Assistance for Social Inclusion and Empowerment

of Immigrants with Persuasive Learning Technologies and Social Network Services

MASELTOV – DELIVERABLE D5.1 “Content Abstraction and Databases”

Page 10 of 31

A detailed list of the implemented rules that are referenced in the previous lists as well as the

corresponding recommendations is given in Deliverable 5.4.2 “Recommendation Services”.

Mobile Assistance for Social Inclusion and Empowerment

of Immigrants with Persuasive Learning Technologies and Social Network Services

MASELTOV – DELIVERABLE D5.1 “Content Abstraction and Databases”

Page 11 of 31

5. DATABASES

This section shows the structure of the back end database that is used by the User Profile and

the Recommender components of the MASELTOV platform. Figure 2 depicts the Entity

Diagram of the database. A short description of the tables shown in the diagram is given in

the sequel.

Figure 2: Database ERD Diagram.

Mobile Assistance for Social Inclusion and Empowerment

of Immigrants with Persuasive Learning Technologies and Social Network Services

MASELTOV – DELIVERABLE D5.1 “Content Abstraction and Databases”

Page 12 of 31

Figure 2 is the relational diagram of the back end database. The key tables are users and

personadatafields; a short explanation is given below.

 Table users holds information about users i.e., their username, password, last login

timestamp and a JSON string (for caching purposes) of the user’s preferences. Users

table is a reference for tables recommendations, events and user_datafields_values.

 Table personaldatafields holds the list of the defined fields that store user

preferences. A number of associated tables store the details and values of the

preferences for the registered user (like data_types, captions, enum_caption,

field_descriptions and datafields_poicategories).

Personaldatafields.datainfo field contains a JSON string that holds the user’s preferences.

Some of them contain a plain text value and some of them hold a reference id to the

respective record of the table where the actual value resides in. These references concern the

tables field_descriptions and enum_captions. So, for example the user’s selection for the field

gender may be ‘male’ or ‘female’. Each one of these two options has their own id and the

actual value resides in the enum_captions table. The later holds the option’s value in all

supported languages.

Table user_datafields_values holds a record for each user and each user’s preference value.

For the user’s preferences that hold multiple selection values, user_datafields_values table

includes multiple entries for the given user id and field id.

Since the application has multilingual support, tables that contain texts to be displayed to the

user, need to hold all language related texts. Table app_langs holds the list of available

languages therefore tables that contain texts (like captions, enum_captions, field_decriptions,

fields_categories) have a reference to app_langs table.

Events received from the Mapp applications are recorded to the events table with reference to

users.id field, therefore each event directly relates the user whose actions resulted to the

event. Moreover, the event’s specific information is recorded separately to event_data table

(with reference to events.id). Events may keep coming from various sources (MApp

applications and services) and for different user; once they are stored in the events table they

can be queried by back end applications like the recommender.

Recommendations table contains the recommendations created for all users with a reference to

the users.id field so as to maintain s reference to the user to whom it is destined.

Tables wikisearchtree, wkisearchresources and wikisearchcombinations are only related to

each other (as shown in Figure 2) but have no other relation with the rest of the database’s

tables. These tables contain data that are used to identify a resource from the data coming

from the events and in case there is a match, a recommendation string is created that is stored

in the recommendations table. The administrator can set a number of keywords in the

wikisearchtree table and a number of resources in wikisearchresources table.

Table access holds information about the backend user and has no other active relation with

the rest of the tables.

Following is a detailed description of each database table and their fields.

Mobile Assistance for Social Inclusion and Empowerment

of Immigrants with Persuasive Learning Technologies and Social Network Services

MASELTOV – DELIVERABLE D5.1 “Content Abstraction and Databases”

Page 13 of 31

Table Name access

Description This table keeps a record for each user of the MASELTOV administrator

Columns id: a unique id for the rows of the table, each user has a unique id

user_email: the user’s email

user_password: the user’s password (encrypted)

user_active: denotes if the user’s account is active (1) or inactive (0)

user_fullname: the user’s fullname

user_lastlogindate: the date and time of the user’s last successful login

user_lastloginip: the user’s IP of the last successful login

Table Name users

Description This table keeps a record for each user of the MASELTOV application.

Columns id: a unique id for the rows of the table, each user has a unique id

user_email: the user’s email

user_password: the user’s password (encrypted)

user_preferences: holds the user’s preferences in JSON, used as a caching

mechanism to sever faster the API requests from the device

user_lastlogin: the date and time of the last successful login (using the API

from the device)

Table Name user_datafields_values

Description This table keeps a number of records (two or more) for each user (from the

users table). Each row in this table for each user joins the field id from the

personaldatafields table and the value the user has selected for this field.

The value may be a string (in `value` field) of the id of the value of an

enumeration type option (`value_id` field). It is actually the exploded JSON

of users.user_preferences field

Columns id: a unique id for each user’s preference selection

user_id: a look up to users.id; connects these values with a user

field_id: a look up to personaldatafields.id; connects the value to a specific

field

value _id: a look up to enum_captions.id; connects the to a fields option

value: the value entered by the user for this field (if not a predefined field’s

option)

Table Name app_langs

Description This table keeps a record for each language available in MASELTOV

application

Columns id: a unique id for each language supported by the application

lang_caption: the language title written in the language’s alphabet

lang_code: the language’s code (ISO 639-1)

is_active: denotes if the user is active (1) or inactive (0)

lang_english_caption: the language title in English

lang_direction: denotes the text orientation for the language (ltr for left-to-

right and rtl for right-to-left)

Table Name personaldatafields

Description This table keeps a record for each user preference field

Mobile Assistance for Social Inclusion and Empowerment

of Immigrants with Persuasive Learning Technologies and Social Network Services

MASELTOV – DELIVERABLE D5.1 “Content Abstraction and Databases”

Page 14 of 31

Columns id: a unique id for each field

caption: the id of the field’s title looking at captions.caption_id

datatype: the id of the field’s data type looking at datatypes.id

datainfo: a string in JSON format, used as caching mechanism to serve

faster information about the fields

mandatory: denotes if the fields is mandatory (1) or not (0)

userEditable: denotes if the field is editable by the user (1) or not (0)

Table Name captions

Description This table keeps a record of the title of each user’s preference field (from

the personaldatafields table) for each language

Columns id: a unique id for each caption

caption_id: a look up to the personaldatafields.caption ; determines for

which field the data are

 caption: the title of the field (at the language’s alphabet; i.e., what the user

will see)

langid: a look up to the app_langs.id determines the language

Table Name datatypes

Description This table keeps a record of the different types of data for the user’s

preference fields (from the personaldatafields table)

Columns id: a unique id for the available data types of the fields

short: a short name of the data type

caption: a name of the data type to display to the backend user

datainfoid: a look up id to the datainfo.id; determines which the datainfo

template to use

Table Name datainfo

Description This table keeps the template json describing each data type

Columns id: a unique id for each data info

type: the type of the field that its data info template can be applied

json: the template (in JSON format) to be used for each new field of a

specific data type

Table Name field_descriptions

Description This table keeps the titles of each user preference field (from the

personaldatafields table) for each language

Columns id: a unique id for each field’s description

fieldid: a look up to the personaldatafields.datainfo JSON value for the

field’s description

text: a text written in the language’s alphabet, for describing why and how

MASELTOV uses the user’s data

langid: a lookup to the app_langs.id which distinguishes the field’s

descriptions for each language

Table Name enum_captions

Description This table keeps all titles for each option of a user’s preference field of type

enumeration, for each language

Columns id: a unique id for each caption for each field’s options

Mobile Assistance for Social Inclusion and Empowerment

of Immigrants with Persuasive Learning Technologies and Social Network Services

MASELTOV – DELIVERABLE D5.1 “Content Abstraction and Databases”

Page 15 of 31

enc_id: a look up to the personaldatafields.datainfo JSON value for the

field’s option

enc_caption: the title of the field’s option (in the alphabet of each language)

enc_langid: a lookup to app_langs.id which determines the field’s option

for each language

Table Name events

Description This table keeps a row for each event received from the MASELTOV

applications from all users

Columns id: a unique id for each event sent from the devices

userid: a look up to the users.id (determines which user’s device sent the

event)

source: the source of the event (which Mapp component produced this event)

timestamp: the date and time the event was sent by the Mapp component to

the client side user profile

receivedFromDeviceAt: the timestamp that holds the moment that the event

received by the backend server

Table Name event_data

Description This table keeps a number of records (one or more) for each event (from the

event table) and contains the key and value of the information describing this

event

Columns id: a unique id for each event’s data

event_id: a lookup to events.id; connecting the event data information with

an event

key: the key of the event data as sent by the Mapp component

value: the value of the event data as sent by the Mapp component

Table Name poi_categories

Description This table keeps a record of the tags to be recognized across the POI JSON

Columns id: a unique id for each POI category

tag: a tag that describes the POI category

Table Name datafields_poicategories

Description This table keeps the join information between the poi categories tags (from

poi_categories table) with the options of the user’s preference field of

hobbies. This join result the categories of points of interest with the user’s

interests

Column poi_category_id: a look up to poi_categories.id

personaldatafield_id: a look up to user’s preference field

Table Name recommendation

Description This table keeps a record of each recommendation created by the

recommender system.

Columns rec_id: a unique id for each recommendation

rec_rectimestamp: the date and time the recommendation created on server

rec_timestamp: the date and time the last triggered event

rec_text: the text produced for this recommendation

rec_tag: the tag string that was recognized in order to produce the

Mobile Assistance for Social Inclusion and Empowerment

of Immigrants with Persuasive Learning Technologies and Social Network Services

MASELTOV – DELIVERABLE D5.1 “Content Abstraction and Databases”

Page 16 of 31

recommendation (for the User.Location events)

rec_userid: a look up to users.id; determines the user for which the

recommendation is produced

rec_expires: the date and time that the recommendation expires (NULL if

never expires)

rec_status: the status of the recommendation (Wait, Sending, sent, Failed,

Expired)

Table Name languagelearning_suggestions

Description This table keeps a record of the resources to recommend to the user for each

language/course and level he/she reaches.

Columns id: a unique id for each language learning suggestion

field_option_id: a look up to the field that this suggestion applies to

level: the level that this suggestion refers to

url: the URL that will be recommended to the user if this level is achieved

text: a description for the administrator in order to distinguish the

suggestions

Table Name wikisearchtree

Description This table keeps the keywords recognised for the wiki search. This table

keeps a number of keywords in a two level tree format. The keywords are

matched with the user’s searches and upon a match a resource will be

recommended to the user

Columns id: a unique id for each item in the wiki search tree

text: the title of the tree item

parentId: the parent id of another item in this table (zero if the item has

parent the root)

Table Name wikisearchresources

Description This table keeps a record of the resources available for the user

recommendations. The administrator sets a number of resources that can be

recommended to the user according to what the user was looking in the wiki

component

Columns id: a unique id for the wiki search resource

url: the URL to recommend to the user for this resource

desc: a description for each resource to help the administration distinguish

them

Table Name wikisearchcombinationss

Description This table is an intermediate table that connects the keywords with the

resources for the wiki search recommendations.

Columns id: a unique id for each wiki search combination

treeId: a lookup to the field wikisearchtree.id

resourceId: a lookup to the field wikisearchresources.id

The actual schema of the back end database is given in Appendix A.

Mobile Assistance for Social Inclusion and Empowerment

of Immigrants with Persuasive Learning Technologies and Social Network Services

MASELTOV – DELIVERABLE D5.1 “Content Abstraction and Databases”

Page 17 of 31

6. DATABASE CONTENTS

This section gives the details of the contents of the back end database, namely the way user

preferences are events are stored.

6.1 USER PREFERENCES

The back end database holds basic information for each user in table users. The information

maintained for each user includes:

 user’s unique id

 user’s e-mail

 one-way encoded password

 last login timestamp

 registration timestamp and

 a field named user_preferences which holds the personal preferences of the user

formed as a JSON string.

The field user_preferences is a cached string with the intention of minimizing the response

time during the user login process. As soon as the user login credentials are entered, they are

sent to the backend server through the User Profile API. In case of a successful authentication

the API responds with the user’s preferences (as a JSON string) so they can be used to build

the User Profile structure within the client component. The API uses the

users.user_preferences field to read the JSON string directly and send it to the mobile client

without the need to construct it on the fly by making (expensive) queries and joins to the

various database tables. Therefore, the JSON string that resides in the user_preferences field

serves as a cached structure for completing the user login process faster.

On the other hand, every time the user makes changes to any User Profile fields, the changed

values are used to update the user_datafields_values table, and reconstruct the JSON string of

the users.user_preferences field (cache update) so that it remains fresh and ready for the next

login request of the user.

In summary, the same data (user’s preferences) are maintained by the database in two

different forms so as to be used efficiently by two different mechanisms:

1. The login API request. It must respond fast returning a JSON string that contains the

user’s preferences; all of them should be returned with no requirement for processing

any one of its fields.

2. The recommender. It needs to use some of the preferences fields for checking rule

predicates, so the data (user’s preferences) must be structured so as to achieve high

performance.

Table 1 shows two different formats of the user’s data.

Mobile Assistance for Social Inclusion and Empowerment

of Immigrants with Persuasive Learning Technologies and Social Network Services

MASELTOV – DELIVERABLE D5.1 “Content Abstraction and Databases”

Page 18 of 31

Table 1: User's Preferences in JSON Format and As Separate Records.

JSON String in users.user_preference User_datafields_values
{

 "fields": [

 {

 "id": "1",

 "value": "Maria"

 },

 {

 "id": "2",

 "value": "maria@maseltov.eu"

 },

 {

 "id": "25",

 "value": "{\"id\":\"45\"}"

 },

 {

 "id": "23",

 "value": "1"

 },

 {

 "id": "26",

 "value": "1"

 },

 {

 "id": "27",

 "value": "1"

 },

 {

 "id": "28",

 "value": "1"

 },

 {

 "id": "29",

 "value": "1"

 },

 {

 "id": "3",

 "value": "{\"id\":\"1\",\"value\":\"English\"}"

 },

 {

 "id": 4,

 "value": "19790503"

 },

 {

 "id": 17,

 "value":

"[{\"id\":\"14\"},{\"id\":\"22\"},{\"id\":\"23\"},{\"id\":\

"24\"},{\"id\":\"32\"},{\"id\":\"27\"},{\"id\":\"28\"}]"

 }

]

}

Table user_datafields_values holds multiple records for each user (user_id field). Each of

these records specifies the User Profile field (field id) and the current value for the field. User

preferences that are left empty by the user do not appear in this table. The fields may hold

either text type values (in this case the actual value is stored in field

users_datafields_values.value), or may hold a predefined value (as defined by the admin,

through the backend management interface, e.g., Male and Female are the two available

values for field Gender) and in this case the field user_datafields_values.value_id is used as a

reference to the field’s value. Table 2 summarizes the different options for the values of the

User Profile fields.

Mobile Assistance for Social Inclusion and Empowerment

of Immigrants with Persuasive Learning Technologies and Social Network Services

MASELTOV – DELIVERABLE D5.1 “Content Abstraction and Databases”

Page 19 of 31

Table 2: Data stored in user_datafields_values.

Elements in fields JSON

Object

Columns in user_datafields_values

id field_id

value

For fields of data types:

Enumeration,

Multi-level Boolean

Enumeration,

Multi-level Integer

Enumeration

For fields of data types:

Text, Number,

Number (limited)

E-mail, Date, Language,

On/Off Switch

value_id value

6.2 EVENTS

Each event is described by a set of three variables:

 timestamp: specifies the date and time the event is created (YYYYMMDDHHIISS

format)

 source: specifies the event source, i.e., a unique identifier of the type of event

 info: is a JSONObject that contains one or more fields providing the specific

information of the event

The following list gives some examples of event data.

 Event generated by GPS Tracking

{

 "timestamp": "20140508162004",

 "source" : "User.Source",

 "info" : {

 "longitude" : "16.346948",

 "latitude" : "48.217689"

 }

}

 Event generated by TextLens
{

 "timestamp": "20140512152014",

 "source" : "TextLens",

 "info" : {

 "detectedText":"please take one"

 }

}

 Event generated by Mode of Transportation

{

 "timestamp": "20140512152014",

 "source" : "MaseltovContext.ModeOfTransportation",

 "info" : {

 "type":"walking",

 "confidence":"92"

 }

}

Mobile Assistance for Social Inclusion and Empowerment

of Immigrants with Persuasive Learning Technologies and Social Network Services

MASELTOV – DELIVERABLE D5.1 “Content Abstraction and Databases”

Page 20 of 31

When an event is sent to the User Profile the id of the user from whom this event is generated

is also communicated. The user id is communicated directly to the API and is not contained

with the event structure. The information that is carried by an event is split into two tables by

the back end User Profile components: events and event_data.

The event source, timestamp and user’s id are saved into the events table. Since the events

may be received with significant delay (for example the user’s device may not be connected

to the Internet when the event is created by a Mapp component) the API also records in events

table the date and time (events.receivedFromDeviceAt field) that the event was received by

the API of the User Profile client component.

For each one of the events, back end User Profile will also create a number of records in the

event_data table. With respect to the previous example for GPS Tracking, the User Profile will

create two records in event_data table, one with event_data.key=<latitude> and one with

event_data.key=<longitude>. Both records will have a reference to the event id (event_data.event_id)

and will have the event_data.value fields filled with values 48.217689 and 16.346948, respectively.

So, the event with data

{

 "timestamp": "20140508162004",

 "source" : "User.Source",

 "info" : {

 "longitude" : "16.346948",

 "latitude" : "48.217689"

 }

}

will produce the following records in the database.

event table

event_data table

6.3 USE OF EVENTS AND PREFERENCE DATA

User preferences that form the static part of the User Profile are stored in the

personaldatafields table. Moreover, events coming from Mapp applications and services (and

capture the user context as was explained above) are stored in the events table and are

immediately available for querying and further processing. For example, back end services,

like the recommender, query the events table when attempting to match rules for producing

recommendations. Multiple such queries may run concurrently either while attempting to fire

various rules, or executing on behalf of several users. The overall efficiency of executing such

queries is obviously limited by the capabilities of the back end database server. Typical

Mobile Assistance for Social Inclusion and Empowerment

of Immigrants with Persuasive Learning Technologies and Social Network Services

MASELTOV – DELIVERABLE D5.1 “Content Abstraction and Databases”

Page 21 of 31

database servers (even freely available ones like MySQL that is used for the present prototype

implementation) are multithreading and make use of connection pools to boost performance.

Mobile Assistance for Social Inclusion and Empowerment

of Immigrants with Persuasive Learning Technologies and Social Network Services

MASELTOV – DELIVERABLE D5.1 “Content Abstraction and Databases”

Page 22 of 31

7. USER IDENTIFICATION

The User Profile client component communicates with the backend server through the API

that is offered by the server. The API responds to certain URI requests in two ways:

1. It responds with data that are user independent (hence no authentication is required).

Such requests are:

a. List of fields (/upfields/): The returned list does not contain any values the user

may have set for these fields. This API request is used in order to retrieve the

list and type of fields and so as the client User Profile component to build the

lists of fields.

b. Field details (/upfield/fid): Returns information about a single field, fid.

c. List of languages (/langs/): Returns the list of available languages in order to

be able to build the list of languages in client User Profile Mapp so as the user

to select their preferred language.

d. List of User Profile drawer titles (/upcategories/): Returns a list of titles to be

able to build the left drawer menu list in Mapp User Profile.

2. It responds with user related data where the request must be authenticated. Such

requests are:

a. Usage statistics (/usagestats/): Returns a list of Mapp components and the time

the user has used the component.

b. New event (/event/): Records a new event coming from Mapp while a user is

logged in, in the application.

c. Update user’s preference (/userup/): Records the changed values of one or

more user’s preferences.

d. User login (/user/): Returns a list of values for user preferences. For each field

in the user preferences the API returns a field id and the user’s selected value.

These values are used to fill the Mapp User Preferences list with the user’s

selections.

e. Creation of new user (/newuser/): Creates a new user; sets the data filled in by

the user in MApp registration form.

f. List of recommendations (/recomm/): Returns a list of recommendations

produced by the Recommender.

g. Update recommendation (/uprecomm/): Records the change of status on a

specific recommendation (e.g., recommendation is starred, recommendation is

read etc.).

For the URIs requests above, the MApp requests must provide e-mail and password of the

logged in user. The e-mail is communicated as a two-way encrypted string, while the

password is communicated as a one-way encoded string.

The following is a sample URI request for user login.
http://maseltov.ait.gr/maseltov/wservice/user/2f59747435312e44cd8ca3e1f1e7d6bd/d8578edf

8458ce06fbc5bb76a58c5ca4

The format of the request is
<protocol>://<domain>/maseltov/wservice/<action>/<user_email>/<user_password>

http://maseltov.ait.gr/maseltov/wservice/user/2f59747435312e44cd8ca3e1f1e7d6bd/d8578edf8458ce06fbc5bb76a58c5ca4
http://maseltov.ait.gr/maseltov/wservice/user/2f59747435312e44cd8ca3e1f1e7d6bd/d8578edf8458ce06fbc5bb76a58c5ca4

Mobile Assistance for Social Inclusion and Empowerment

of Immigrants with Persuasive Learning Technologies and Social Network Services

MASELTOV – DELIVERABLE D5.1 “Content Abstraction and Databases”

Page 23 of 31

The following is a sample URI request for a new event.

http://maseltov.ait.gr/maseltov/wservice/event/2f59747435312e44cd8ca3e1f1e7d6bd/d8578ed

f8458ce06fbc5bb76a58c5ca4?timestamp=20140514130521&source=User.Location&info={“d

uration’:”25.12926545”}&id=120

The format of the request is
<protocol>://<domain>/maseltov/wservice/<action>/<user_email>/<user_password>/?timesta

mp=<timestamp>&source=<source>&info=<event_info_json>&id=<event_id_reference>

The above sample URIs define the following API parameters.

1. <action>: the action to be taken, either user (for login in a user) or event (for

communicating an event).

2. <user_email>: a two-way (AES) encrypted string that contains the user’s e-mail.

3. <user_password>: a one-way (MD5) encrypted string produced from the user’s

password.

The API upon receiving such a request, it first identifies the user and then proceeds to execute

the appropriate action. The API decrypts the e-mail received and seeks a match in the

database (table users). As soon as the user exists and the password is matched, the API

records the action for the specific user. In case the user validation process fails, the API

responds with the following error message and won’t execute the action received.
{

 "result": {

 "user": {

 "id": null,

 "reason": "WRONG_CREDENTIALS"

 }

 }

}

MASELTOV allows users to register and then login without using their real e-mail address.

Instead they can use a “fake” e-mail address produced automatically by MApp User Profile

by using unique ids from the device. This allows the user to login from their device without

exposing their real e-mail address. The above described communication via the MASELTOV

API works exactly the same way in case of anonymous users, since the MApp User Profile

creates a unique e-mail address and password for such a user. These credentials are also

transmitted using the same encryption rules as a “real” user’s credentials.

The prototype implementation of the User Profile and the back end database is based on the

XAMPP 1.8.2 and MySQL 5.0.10 servers. Both can handle multiple users and requests at the

same time so simultaneous activities from concurrent users are handled automatically by the

servers. Details of the implemented prototypes are presented in Deliverable D5.2 “User

Profiling and Personalization”.

http://maseltov.ait.gr/maseltov/wservice/event/2f59747435312e44cd8ca3e1f1e7d6bd/d8578edf8458ce06fbc5bb76a58c5ca4?timestamp=20140514130521&source=User.Location&info=%7b
http://maseltov.ait.gr/maseltov/wservice/event/2f59747435312e44cd8ca3e1f1e7d6bd/d8578edf8458ce06fbc5bb76a58c5ca4?timestamp=20140514130521&source=User.Location&info=%7b
http://maseltov.ait.gr/maseltov/wservice/event/2f59747435312e44cd8ca3e1f1e7d6bd/d8578edf8458ce06fbc5bb76a58c5ca4?timestamp=20140514130521&source=User.Location&info=%7b

Mobile Assistance for Social Inclusion and Empowerment

of Immigrants with Persuasive Learning Technologies and Social Network Services

MASELTOV – DELIVERABLE D5.1 “Content Abstraction and Databases”

Page 24 of 31

8. SPACE REQUIREMENTS

Most of the MApp components produce a number of events, which are eventually sent to the

backend server for storage, processing, and, in several cases, use by the recommender system.

It is difficult to derive an analytic formula that gives an exact estimate of the number of events

that may be generated by a user over a time period. Some users may make light use of the

MApp applications whereas others may make quite heavy use. Obviously, users who move a

lot, and use a multitude of MApp applications simultaneously, for example the social radar to

communicate with volunteers, the navigation service to get help how reach a destination or

move around a city, the text lens for reading signs and translating the messages, the learning

service for taking lessons, as well as a number of services that use the device’s sensors to

identify the user’s location and the user’s movements, may result into large amounts of

generated events which may pose significant storage requirements. It is expected though that

average users will make a more mild use of the MApp applications, resulting into moderate

and, at any rate, acceptable storage requirements, according the analysis presented below.

Table 3 summarizes the data and corresponding sizes Mapp components send back to the

server.

Table 3: Data Usage and Storage for each Mapp Component.

Mapp

Component
Event

Response

size (in

bytes)

Storage

size (in

bytes)

Interval Comments

Language

learning

Usage 48 253

Every time the user

exits the Mapp

component

TextLens

Usage 48 253

Every time the user

exits the Mapp

component

Upon

capturing/translating

a sign

 253

Every time the user

takes a photo of a

sign and TextLens

detects/translatesthe

recognized text

User Profile

Usage 48 253

Every time the user

exits the Mapp

component

GPS tracking 48 381

Every one minute

and only if the user

has moved 500m

from last such

event

Only if

user has set

GPS

Tracking

to ON

from User

Profile

Settings

Recommendations Usage 48 253

Every time the user

exits the Mapp

component

Info Usage 48 253
Every time the user

exits the Mapp

Mobile Assistance for Social Inclusion and Empowerment

of Immigrants with Persuasive Learning Technologies and Social Network Services

MASELTOV – DELIVERABLE D5.1 “Content Abstraction and Databases”

Page 25 of 31

component

Article viewed by

the user
48 253

Every time the user

reads a Info Article

Augmented

reality
Usage 48 253

Every time the user

exits the Mapp

component

Georadar

Usage 48 253

Every time the user

exits the Mapp

component

User rates an

assistance
48 509

Every time the user

rates an assistance

Navigation

Usage 48 253

Every time the user

exits the Mapp

component

Route Starts / Ends 48 637

Every time the user

starts and every

time navigation

ends

Places of Interest

Usage 48 253

Every time the user

exits the Mapp

component

User searches for a

POI
48 253

Every time the user

searches for a POI

Serious Game Usage 48 253

Every time the user

exits the Mapp

component

8.1 AVERAGE MAPP USAGE

This section presents some rough calculations for the space required to store the events that

are generated by a user community, assuming an average use of the MApp applications. We

assume that according the usage pattern a user makes a 10-hour use of the MASELTOV

platform per day. Therefore, as the location service generates positional events every five

minutes (this duration is a configurable parameter of the platform), 12 such events will be

generated per hour and 120 per day. We also assume an average use of another 5 MApp

applications per day, each generating a single event per hour, for a total of 170 events per day.

We can be a bit more conservative and assume a total of 200 events per day per user.

Therefore, if 200 events are produced per day per user per day, and each event requires

approximately 300 bytes then the storage needs will be 60 KBytes per day per user, and 21.9

MBytes per year per user. For a community of 1000 users the space requirements are 21.9

GBytes per year, which is a rather acceptable amount of data by today’s storage capacities.

Actual usage statistics will be extracted from the scheduled two-month long trial tests starting

September 2014. Moreover, after receiving feedback from these trials we will implement

rules for removing any unused event data (for example every two or three months) so that the

total size within a year will be further reduced. For example a GPS location event that

produced no recommendations would make no sense to be kept in the database.

Mobile Assistance for Social Inclusion and Empowerment

of Immigrants with Persuasive Learning Technologies and Social Network Services

MASELTOV – DELIVERABLE D5.1 “Content Abstraction and Databases”

Page 26 of 31

APPENDIX A: DATABASE SCHEMA

Following is the schema of the back end database as defined in the prototype implementation,

which is based on MySQL. The following schema has been produced automatically by the

MySQL administration tools.

-- phpMyAdmin SQL Dump

-- version 4.0.4

-- http://www.phpmyadmin.net

--

-- Host: 127.0.0.1

-- Generation Time: Feb 12, 2014 at 09:17 AM

-- Server version: 5.5.32

-- PHP Version: 5.4.16

SET SQL_MODE = "NO_AUTO_VALUE_ON_ZERO";

SET time_zone = "+00:00";

/*!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT */;

/*!40101 SET @OLD_CHARACTER_SET_RESULTS=@@CHARACTER_SET_RESULTS */;

/*!40101 SET @OLD_COLLATION_CONNECTION=@@COLLATION_CONNECTION */;

/*!40101 SET NAMES utf8 */;

--

-- Database: `maseltov`

--

CREATE DATABASE IF NOT EXISTS `maseltov` DEFAULT CHARACTER SET utf8 COLLATE

utf8_general_ci;

USE `maseltov`;

-- --

--

-- Table structure for table `access`

--

CREATE TABLE IF NOT EXISTS `access` (

 `id` int(11) NOT NULL AUTO_INCREMENT,

 `user_email` varchar(80) NOT NULL,

 `user_password` varchar(100) NOT NULL,

 `user_active` char(1) NOT NULL,

 `user_fullname` varchar(50) NOT NULL,

 `user_lastlogindate` datetime NOT NULL,

 `user_lastloginip` varchar(30) NOT NULL,

 PRIMARY KEY (`id`),

 UNIQUE KEY `user_email` (`user_email`),

 UNIQUE KEY `id` (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=2 ;

-- --

--

-- Table structure for table `app_langs`

--

CREATE TABLE IF NOT EXISTS `app_langs` (

 `id` int(11) NOT NULL AUTO_INCREMENT,

http://www.phpmyadmin.net/

Mobile Assistance for Social Inclusion and Empowerment

of Immigrants with Persuasive Learning Technologies and Social Network Services

MASELTOV – DELIVERABLE D5.1 “Content Abstraction and Databases”

Page 27 of 31

 `lang_caption` varchar(50) NOT NULL,

 `lang_code` varchar(2) NOT NULL,

 `is_active` char(1) NOT NULL DEFAULT '0',

 `lang_english_caption` varchar(80) NOT NULL,

 `lang_direction` enum('LTR','RTL') NOT NULL DEFAULT 'LTR',

 PRIMARY KEY (`id`),

 UNIQUE KEY `id` (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=9 ;

-- --

--

-- Table structure for table `captions`

--

CREATE TABLE IF NOT EXISTS `captions` (

 `id` int(11) NOT NULL AUTO_INCREMENT,

 `caption_id` int(11) NOT NULL,

 `caption` varchar(50) NOT NULL,

 `langid` int(11) NOT NULL,

 PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=289 ;

-- --

--

-- Table structure for table `datafields_poicategories`

--

CREATE TABLE IF NOT EXISTS `datafields_poicategories` (

 `poi_category_id` int(11) NOT NULL,

 `personaldatafield_id` int(11) NOT NULL,

 UNIQUE KEY `a` (`poi_category_id`,`personaldatafield_id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

-- --

--

-- Table structure for table `datainfo`

--

CREATE TABLE IF NOT EXISTS `datainfo` (

 `id` int(11) NOT NULL AUTO_INCREMENT,

 `type` varchar(20) NOT NULL,

 `json` varchar(300) NOT NULL,

 PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=10 ;

-- --

--

-- Table structure for table `datatypes`

--

CREATE TABLE IF NOT EXISTS `datatypes` (

 `id` int(11) NOT NULL AUTO_INCREMENT,

 `short` varchar(10) NOT NULL,

 `caption` varchar(40) NOT NULL,

 `datainfoid` int(11) NOT NULL,

 PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=10 ;

Mobile Assistance for Social Inclusion and Empowerment

of Immigrants with Persuasive Learning Technologies and Social Network Services

MASELTOV – DELIVERABLE D5.1 “Content Abstraction and Databases”

Page 28 of 31

-- --

--

-- Table structure for table `enum_captions`

--

CREATE TABLE IF NOT EXISTS `enum_captions` (

 `id` int(11) NOT NULL AUTO_INCREMENT,

 `enc_id` int(11) NOT NULL,

 `enc_caption` varchar(80) NOT NULL,

 `enc_langid` int(11) NOT NULL,

 PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=653 ;

-- --

--

-- Table structure for table `events`

--

CREATE TABLE IF NOT EXISTS `events` (

 `id` bigint(20) NOT NULL AUTO_INCREMENT,

 `source` varchar(100) NOT NULL,

 `timestamp` datetime NOT NULL,

 `userid` int(11) NOT NULL,

 `receivedFromDeviceAt` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,

 PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=216 ;

-- --

--

-- Table structure for table `event_data`

--

CREATE TABLE IF NOT EXISTS `event_data` (

 `id` bigint(20) NOT NULL AUTO_INCREMENT,

 `event_id` bigint(20) NOT NULL,

 `key` varchar(30) NOT NULL,

 `value` varchar(80) NOT NULL,

 PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=372 ;

-- --

--

-- Table structure for table `fields_categories`

--

CREATE TABLE IF NOT EXISTS `fields_categories` (

 `id` int(11) NOT NULL AUTO_INCREMENT,

 `langid` int(6) NOT NULL,

 `caption` varchar(100) NOT NULL,

 `order` smallint(6) NOT NULL,

 `isActive` bit(1) NOT NULL DEFAULT b'1',

 `fcid` smallint(11) NOT NULL,

 PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=25 ;

-- --

Mobile Assistance for Social Inclusion and Empowerment

of Immigrants with Persuasive Learning Technologies and Social Network Services

MASELTOV – DELIVERABLE D5.1 “Content Abstraction and Databases”

Page 29 of 31

--

-- Table structure for table `field_descriptions`

--

CREATE TABLE IF NOT EXISTS `field_descriptions` (

 `id` int(11) NOT NULL AUTO_INCREMENT,

 `fieldid` int(11) NOT NULL,

 `text` text NOT NULL,

 `langid` int(11) NOT NULL,

 PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=233 ;

-- --

--

-- Table structure for table `languagelearning_suggestions`

--

CREATE TABLE IF NOT EXISTS `languagelearning_suggestions` (

 `id` int(11) NOT NULL AUTO_INCREMENT,

 `field_option_id` int(11) NOT NULL,

 `level` int(11) NOT NULL,

 `url` varchar(500) NOT NULL,

 `text` varchar(500) NOT NULL,

 PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=7 ;

-- --

--

-- Table structure for table `personaldatafields`

--

CREATE TABLE IF NOT EXISTS `personaldatafields` (

 `id` int(11) NOT NULL AUTO_INCREMENT,

 `caption` int(11) NOT NULL,

 `datatype` int(11) DEFAULT NULL,

 `datainfo` text NOT NULL,

 `mandatory` char(1) NOT NULL DEFAULT '0',

 `userEditable` char(1) NOT NULL DEFAULT '1',

 `field_category_id` int(11) NOT NULL,

 PRIMARY KEY (`id`),

 UNIQUE KEY `caption` (`caption`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=30 ;

-- --

--

-- Table structure for table `poi_categories`

--

CREATE TABLE IF NOT EXISTS `poi_categories` (

 `id` int(11) NOT NULL AUTO_INCREMENT,

 `tag` varchar(100) NOT NULL,

 PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=11 ;

-- --

--

Mobile Assistance for Social Inclusion and Empowerment

of Immigrants with Persuasive Learning Technologies and Social Network Services

MASELTOV – DELIVERABLE D5.1 “Content Abstraction and Databases”

Page 30 of 31

-- Table structure for table `recommendation`

--

CREATE TABLE IF NOT EXISTS `recommendation` (

 `rec_id` bigint(20) NOT NULL AUTO_INCREMENT,

 `rec_rectimestamp` varchar(14) NOT NULL,

 `rec_timestamp` varchar(14) NOT NULL,

 `rec_text` varchar(500) NOT NULL,

 `rec_tag` varchar(60) NOT NULL,

 `rec_userid` int(11) NOT NULL,

 `rec_expires` varchar(14) DEFAULT NULL,

 `rec_status` enum('WAIT','SENDING','SENT','FAILED','EXPIRED') NOT NULL

DEFAULT 'WAIT',

 `starred` bit(1) NOT NULL DEFAULT b'0',

 `read` bit(1) NOT NULL DEFAULT b'0',

 `deleted` bit(1) NOT NULL DEFAULT b'0',

 PRIMARY KEY (`rec_id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=4614 ;

-- --

--

-- Table structure for table `users`

--

CREATE TABLE IF NOT EXISTS `users` (

 `id` int(11) NOT NULL AUTO_INCREMENT,

 `user_email` varchar(80) NOT NULL,

 `user_password` varchar(200) NOT NULL,

 `user_preferences` text NOT NULL,

 `last_login` datetime NOT NULL,

 `registered` datetime NOT NULL,

 PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=33 ;

--

-- Triggers `users`

--

DROP TRIGGER IF EXISTS `users_before_delete`;

DELIMITER //

CREATE TRIGGER `users_before_delete` AFTER DELETE ON `users`

 FOR EACH ROW BEGIN

 DELETE FROM user_datafields_values where user_datafields_values.user_id =

OLD.id;

 END

//

DELIMITER ;

-- --

--

-- Table structure for table `user_datafields_values`

--

CREATE TABLE IF NOT EXISTS `user_datafields_values` (

 `id` int(11) NOT NULL AUTO_INCREMENT,

 `user_id` int(11) NOT NULL,

 `field_id` int(11) NOT NULL,

 `value_id` int(11) DEFAULT NULL,

 `value` varchar(200) NOT NULL,

Mobile Assistance for Social Inclusion and Empowerment

of Immigrants with Persuasive Learning Technologies and Social Network Services

MASELTOV – DELIVERABLE D5.1 “Content Abstraction and Databases”

Page 31 of 31

 PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=2021 ;

-- --

--

-- Table structure for table `wikisearchcombinations`

--

CREATE TABLE IF NOT EXISTS `wikisearchcombinations` (

 `id` int(11) NOT NULL AUTO_INCREMENT,

 `treeId` int(11) NOT NULL,

 `resourceId` int(11) NOT NULL,

 PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=10 ;

-- --

--

-- Table structure for table `wikisearchresources`

--

CREATE TABLE IF NOT EXISTS `wikisearchresources` (

 `id` int(11) NOT NULL AUTO_INCREMENT,

 `url` varchar(500) NOT NULL,

 `desc` varchar(500) NOT NULL,

 PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=7 ;

-- --

--

-- Table structure for table `wikisearchtree`

--

CREATE TABLE IF NOT EXISTS `wikisearchtree` (

 `id` int(11) NOT NULL AUTO_INCREMENT,

 `text` varchar(100) NOT NULL,

 `parent` int(11) NOT NULL,

 PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=11 ;

/*!40101 SET CHARACTER_SET_CLIENT=@OLD_CHARACTER_SET_CLIENT */;

/*!40101 SET CHARACTER_SET_RESULTS=@OLD_CHARACTER_SET_RESULTS */;

/*!40101 SET COLLATION_CONNECTION=@OLD_COLLATION_CONNECTION */;

